Genomics is the study of our genes and how they interact with one another, our lifestyle and the environment to influence our health. It is a rapidly expanding field with new findings being made every day.

Recent developments as a result of advancing genomic knowledge and technologies include faster and more precise diagnoses, earlier intervention to diseases, the development of new drugs and improved treatment plans tailored for the patient. These innovations are improving health and wellbeing and ultimately extending the longevity of our lives.

The Office of Population Health Genomics (OPHG) was established in 2001 to optimise the benefits of emerging genomic knowledge and technologies for the people of Western Australia (WA). OPHG’s mission is to lead the integration of genomics into the WA health system, and bridge the interface between clinical practice and public health. To achieve this, OPHG:

- develops system-wide and service-specific public policy by collaborating with clinicians and other health professionals, scientists, policymakers and consumers across Australia and internationally. These policies shape government action on genomics issues and population-based screening programs at the state and national levels.
- supports Health Service Providers to plan, monitor, deliver and evaluate the performance of services. This ensures that services, and programs, delivered through the WA health system are safe, high quality, equitable, accessible, efficient and effective.
From the Director

Welcome to the OPHG Yearbook for 2017. It is with great pride that I present to you the successes of our team from the last 12 months.

In June, we hit the halfway point for the implementation of the *WA Rare Diseases Strategic Framework 2015-2018*. This strategic framework draws together a range of initiatives aimed at improving the health and wellbeing of people living with rare diseases.

The team has made significant progress towards achieving the goals set out in the strategic framework. The milestones we have met so far have already demonstrated the powerful impact a coordinated approach to policy and health services can have for people living with rare diseases. Some of our noteworthy achievements include:

- the development, implementation and evaluation of the Undiagnosed Diseases Program WA
- establishing the WA Genomics Health Network Executive Advisory Group, and
- drafting a definition of ‘rare disease’ for adoption by the WA health system.

Closing off yet another successful year, we accomplished a major milestone when we received notice that the Australian Health Ministers’ Advisory Council endorsed the *Newborn Bloodspot Screening National Policy Framework* and its Implementation Plan. This policy framework marks the first time that newborn bloodspot screening programs have been united by a government-endorsed vision and way of working since the programs were established 50 years ago.

Our team first started working on the policy framework back in 2014. The comprehensive literature reviews and significant consultations with stakeholders that informed this landmark policy give us assurance that it will successfully support Australian newborn bloodspot screening programs for many years to come.

These achievements would not have been possible without the diligent and dedicated staff at OPHG. Although our team is small, we continue to deliver on significant projects that optimise the benefits of genomic knowledge and emerging technologies across the WA health system.

In 2018, we will see the commencement of a raft of new work for OPHG. We will also continue to carry out the remaining initiatives of the *WA Rare Diseases Strategic Framework 2015-2018* to further improve outcomes for people living with rare diseases. We can’t wait to find out what new opportunities and experiences the new year will bring.

Professor Hugh Dawkins
Director
Office of Population Health Genomics
2017 Highlights

<table>
<thead>
<tr>
<th>Supporting the ongoing success of newborn bloodspot screening in Australia</th>
<th>OPHG united all Australian state and territory newborn bloodspot screening programs through the development of the Newborn Bloodspot Screening National Policy Framework. Read about this on page 11.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finding new ways to support people living with rare and undiagnosed conditions</td>
<td>OPHG supported Genetic Services of WA in setting up the Transitional Undiagnosed Diseases Program, which is tailored towards the ‘transitional patient cohort’ of youths aged 16 to 24 years. Read about this on page 6.</td>
</tr>
<tr>
<td>Defining ‘rare disease’</td>
<td>OPHG also continued their research on the impact of rare diseases to better understand the needs of people living with rare diseases and improve the planning and delivery of services that better address these needs. Read about this on page 7.</td>
</tr>
<tr>
<td>Defining ‘rare disease’</td>
<td>OPHG is developing a definition for ‘rare disease’ to be adopted by the WA health system. Prior to their efforts, a consistent and agreed-upon definition for the term did not exist in WA. Read about this on page 11.</td>
</tr>
</tbody>
</table>

Paving a new path to diagnosis

Throughout 2017, WA’s Undiagnosed Diseases Program (UDP-WA) continued to provide diagnoses to families of children in WA living with complex and long-standing medical conditions. The aim of the UDP-WA is to find patients a diagnosis, or at least a better understanding, of their condition to optimise their medical care. Two exciting developments related to the program took place in 2017. These were:

- the development of a complementary ‘Transitional Undiagnosed Diseases Program’, and
- the commencement of a study by organisational psychologists examining the multi-level factors underlying the program’s unprecedented success (discussed further on page 14).

Why we need a transitional UDP

The UDP-WA is currently tailored towards finding a diagnosis in children. When children with ongoing healthcare needs reach the age of 16 years, they begin a transition process where they will move from receiving their healthcare in the paediatric care sector to the adult care sector.

The transitional process from paediatric care to adult care is widely acknowledged as a difficult period for any patient. This is because patients start to detach from the familiarity of a children’s hospital to see different doctors and receive health services at multiple clinics. These young patients may also be required to take on greater financial responsibilities for their healthcare. For young patients living with complex and often debilitating conditions, the transitional journey can pose far greater difficulties.

Patients aged 16 years and above are not eligible for the UDP-WA, however the need for a program to find a diagnosis in this patient cohort still exists. In response to this need, OPHG, in collaboration with Genetic Services of WA and the WA Register of Developmental Anomalies (WARDA), has engaged Linear Clinical Research to scope the clinical and non-clinical support required for a UDP targeted towards young people aged 16 to 24 years.

What’s next?

The resulting Transitional UDP held its first Expert Panel meeting in November 2017, where a medical summary of the program's first patient was reviewed by an interdisciplinary team of medical experts. These Expert Panel meetings will continue to see one new case a month (as will the original UDP-WA) throughout 2018.
How are rare diseases affecting children in WA?

‘Rare diseases’ is a term that is commonly used to refer to a health condition for which the prevalence is not greater than 5 in 10,000 in a specified population (WA’s definition of rare diseases is currently being explored, page 11).

Although the number of people affected is small, rare diseases can have severe health impacts, including physical and intellectual disabilities as well as premature death. Rare diseases can also cause significant economic challenges for those affected, their families and the health care system because they are difficult to diagnose and have limited treatment options. It is estimated that half of all people living with rare diseases are children and that rare diseases cause one-third of all deaths in the first year of life.

Back in 2016, OPHG published a study that used the WA health system’s world-class data linkage system to identify people with rare diseases who were admitted to hospital in WA. Using this data, OPHG assessed how much time they spent in hospital and how much these hospital stays cost. Results from this study showed that people in WA living with rare diseases went to hospital twice as many times as the general community and accounted for approximately 10% of the state hospital costs. Following on from this study, OPHG established two more studies focussed on children living with rare diseases. These studies, using the same data collected for the 2016 paper, will aim to fill some of the knowledge gaps in childhood rare diseases and how children with rare diseases access health services in WA.

The first study will identify children living with rare diseases in WA and examine their hospital admissions and costs, emergency department presentations and mortality rates up until their fifth birthday. The data analysis for this study has been completed and the findings are currently being prepared for publication. It is anticipated that this study will be published in 2018.

For the second study, OPHG has partnered with the Telethon Kids Institute to investigate how often WA children living with rare diseases experience mental illness and what types of mental conditions are diagnosed among this group. The use of mental health services among children living with both a rare disease and a mental illness in WA will also be measured. The initial phase of the project, which involves a literature review and selection of methodology, is currently underway.

Results from both of these studies will help the WA health system to: better understand the needs of children living with rare diseases and their families; and improve the planning and delivery of policies, services and programs that are equitable, efficient and cost-effective.
Newborn bloodspot screening in WA continues to excel

Each year, approximately 35,000 newborns (representing over 99% of babies born in WA) are screened for around 25 rare but serious medical conditions through the WA Newborn Bloodspot Screening Program. OPHG works closely with the program to provide policy support, monitor program performance and assist with the development of new resources. The collaboration helps to ensure this critical public health service continues to be of the highest quality.

Last year, the WA Newborn Bloodspot Screening Program detected 44 babies with one of the conditions it screens for. Management approaches, such as special diets or medications, were then commenced for these babies, helping them to develop normally. The numbers of babies detected by the program for each of the conditions screened are provided in the table below.

Recent program data provided in the table above illustrate that the WA Newborn Bloodspot Screening Program continues to perform at a high standard every year. Of note last year was the improvement in timely referral of babies for clinical assessment, with 96% of babies being referred within three days of a positive screening result. The number of unsuitable samples has also dropped by more than half compared to the previous year, decreasing to 0.10% of samples. This success is likely a result of the e-learning resource for midwives and nurses, which was released in 2016.

<table>
<thead>
<tr>
<th>Condition detected</th>
<th>Pre-2014</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>Total detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital hypothyroidism</td>
<td>322</td>
<td>21</td>
<td>21</td>
<td>24</td>
<td>389</td>
</tr>
<tr>
<td>Cystic fibrosis</td>
<td>147</td>
<td>13</td>
<td>9</td>
<td>10</td>
<td>179</td>
</tr>
<tr>
<td>Phenylketonuria</td>
<td>69</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>82</td>
</tr>
<tr>
<td>MCAD deficiency</td>
<td>26</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>Classical galactosaemia</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>Other</td>
<td>40</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Program standard</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of live births</td>
<td>34 724</td>
<td>34 744</td>
<td>35 652</td>
</tr>
<tr>
<td>Infants screened</td>
<td>99.80%</td>
<td>99.86%</td>
<td>99.68%</td>
</tr>
<tr>
<td>Number of refusals</td>
<td>27</td>
<td>26</td>
<td>34</td>
</tr>
<tr>
<td>Samples collected within 48 to 72 hours</td>
<td>83%</td>
<td>85%</td>
<td>86%</td>
</tr>
<tr>
<td>Cards received by the laboratory within four days</td>
<td>73%</td>
<td>74%</td>
<td>70%</td>
</tr>
<tr>
<td>Infants referred for clinical assessment within three days of a positive result</td>
<td>82%</td>
<td>88%</td>
<td>96%</td>
</tr>
<tr>
<td>Number of unsuitable samples</td>
<td>93 (0.26%)</td>
<td>79 (0.22%)</td>
<td>35 (0.10%)</td>
</tr>
</tbody>
</table>
A new cervical screening test has arrived

On 1 December 2017, the National Cervical Screening Program implemented new changes to better protect women against cervical cancer. These changes include the introduction of a new cervical screening test to replace the Pap test. Although the test feels the same as the previous Pap test, it is more accurate as the sample taken now tests for the human papillomavirus (HPV).

HPV is a common virus that is spread through genital skin-to-skin contact during sexual activity. Usually these infections have no symptoms and the body will naturally clear most types of HPV within one to two years. However, if the virus is not cleared by the body, it can cause changes to the cells in the cervix. In rare cases, these changes can develop into cervical cancer over the course of 10 to 15 years. Nearly all cases of cervical cancer are caused by HPV.

The good news is that cervical cancer is one of the most preventable cancers with the help of regular cervical screening. The new Cervical Screening Test is expected to protect up to 30% more women, as it detects a woman’s risk of developing cervical cancer much earlier than was possible with the Pap test.

Because the new test is more effective, women can be safely screened less often. Those who test negative for HPV in the new program are able to be safely re-screened every five years. Some other parts of the program have changed too – for example, women under the age of 25 will no longer be required to screen.

For more information about the new Cervical Screening Test, check out the HealthyWA website or the National Cervical Screening Program website.

Fact check!

Here are a few facts about the new Cervical Screening Test that you may not have been aware of before.

Fact #1: The two-yearly pap smear has been replaced by a five-yearly cervical screening test for women aged 25 to 74.

Fact #2: Screening with a cervical screening test every five years is more effective than, and just as safe as, screening with a pap smear every two years.

Fact #3: For most women, her first cervical screening test will be two years after her last pap smear.

Fact #4: The cervical screening test looks for HPV, which is responsible for causing nearly all cervical cancers.

Fact #5: Women who have had the HPV vaccine also need to have regular cervical screening tests.
Definition of a rare disease

Definitions are important because they enable a shared understanding of a word or phrase. They are also useful for improving clarity and focus in conversations, particularly for complex subjects like rare diseases.

A standard definition of rare diseases is a vital step to improving the health and wellbeing of people living with rare diseases. A standard definition adopted by the WA health system can help clinicians, researchers and policymakers to identify people living rare diseases in WA. This then allows the WA health system to plan, implement and evaluate clinical services and public health interventions to better meet the needs of this group.

The term ‘rare diseases’ is commonly used as an umbrella category covering thousands of distinct conditions. Definitions vary depending on the country and the purpose for defining these distinct conditions as one big group.

This year, OPHG worked closely with the WA Genomic Health Network’s Executive Advisory Group (WAGHN EAG) to develop a standard definition for rare diseases to be used across the WA health system. The development process so far has involved a literature review and a comprehensive analysis of key issues identified by the WAGHN EAG.

Further consultation is planned around how the definition can be used in the WA health system. OPHG looks forward to continue work with local stakeholders in 2018 to ensure that a useful definition can be adopted by the WA health system.

New national policy framework is spot on!

A significant milestone has been reached for newborn bloodspot screening in Australia, with the endorsement by all Health Departments of the Newborn Bloodspot Screening National Policy Framework. This event marks the first time that newborn bloodspot screening programs have been united by a government-endorsed vision and way of working, since their establishment 50 years ago.

The purpose of the policy framework is to support the continued success of newborn bloodspot screening in Australia. To achieve this goal, the policy framework offers high-level guidance to those involved in the delivery and management of newborn bloodspot screening programs. In doing so, the policy framework supports more consistent and effective screening for families across the country.

Newborn bloodspot screening, also known as the heel-prick test, involves a small amount of blood being collected from a newborn baby’s foot within a few days after birth. This blood sample is tested for around 25 rare but serious medical conditions. Early detection through screening enables babies that have one of these conditions to commence treatment, which for many infants helps to prevent intellectual or physical disability, or death.
Why was a national policy framework needed?

Newborn bloodspot screening programs in Australia are funded by state and territory governments. All programs are highly successful, screening over 99% of babies born every year. Because each program operates independently of the others, they are all run slightly differently. Despite this, the conditions screened by the programs are largely the same across the country. However, there has never before been a government-endorsed process in place to support an assessment of conditions to find out whether they were appropriate for inclusion in the programs. As a result, the conditions screened as part of newborn bloodspot screening have remained unchanged since the mid-2000s.

The current rates of technological progress mean that programs need to make sure that they are able to adapt and grow going into the future. The policy framework is designed to provide programs guidance to do just that, by offering a national way to assess conditions for inclusion in newborn bloodspot screening. By providing policies that will be adopted by all programs, it will also help to establish a level of consistency in the delivery of newborn bloodspot screening across the country, while allowing programs sufficient flexibility to continue to operate independently.

Who wrote it and how?

The policy framework was developed by the national Newborn Bloodspot Screening Working Group, led by OPHG, under the direction of the Standing Committee on Screening. Its development involved extensive consultation with experts, programs and the public. This included two consultation workshops and an online survey. The policy framework was also informed by a vast array of contemporary academic literature and relevant policy documents.

What does it say?

The policy framework describes what is needed to support the ongoing success of newborn bloodspot screening in Australia. It includes policies that outline:

- guiding principles and a high-level description of the programs
- how the programs should be implemented
- what is needed to support high-quality and safe newborn bloodspot screening
- how the programs should be monitored, reviewed and evaluated to ensure they are achieving their aim and objectives, and
- a decision-making process, which enables conditions to be assessed to determine whether it is appropriate to screen for them as part of newborn bloodspot screening.

The policy framework was endorsed by the Australian Health Ministers’ Advisory Council on 8 December 2017. If you would like to be notified of its public release, please email your contact details to NBSWG@health.wa.gov.au.
In 2017, OPHG commenced work with a team of organisational psychologists and researchers at the Centre for Transformative Work Design (CTWD). CTWD is leading a study called ‘Solving the unsolvable: uncovering the active ingredients in the UDP-WA’. The overall aim of this project is to uncover the ‘active ingredients’ that make the UDP-WA an effective and sustainable approach to diagnosing undiagnosed diseases. The study will involve investigating important factors at the individual level (e.g. expertise, interpersonal skills), the team level (e.g. psychological safety), the organisational level (e.g. leadership, advocacy), and the national level (e.g. program prestige, government support).

A key outcome of this collaborative project will be the development of a comprehensive, multi-level framework that provides new insights into the key functions of the UDP-WA, for patients, clinicians, and the broader health system. This framework will inform the future development and expansion of the program, as well as other initiatives that seek to pioneer new methods of clinical collaboration and multidisciplinary collaboration in other fields.

The UDP-WA is part of a global phenomenon to meet patient needs, with many UDPs existing internationally as part of the Undiagnosed Diseases Network International. At present, the CTWD is exploring opportunities for comparison studies with UDPs in Europe and the United States. Such studies create the opportunity to strengthen the local program, bringing overseas learnings about the effectiveness of their UDPs here to WA, for the benefit of WA patients. Conversely, learnings from WA’s UDP can be translated to benefit other UDP patients worldwide.

OPHG is proud to work alongside the world-class program to help plan and deliver services that better support people living with rare and undiagnosed diseases in WA.

Read on or head over to pages 6, 7 and 11 to find out about the progress OPHG has made in the rare disease space.

Visit projectyudp.com to learn more about the UDP-WA.
Strengthening international relationships

International collaboration plays a significant role in advancing, sharing and applying new scientific discoveries. In the field of rare diseases, collaboration and partnerships are especially important as patient numbers are often too small and data is very limited.

In October, OPHG was fortunate to have been visited by Professor Makoto Suematsu, President of the Japan Agency for Medical Research and Development (AMED) and a supporting delegation of key AMED leaders. Japan, like WA, is a member of the International Rare Diseases Research Consortium.

The AMED delegation visited Perth for two days to see what has been happening in WA in the rare diseases space and meet the people behind the UDP-WA. During their visit, the delegation also discussed how future partnerships could flourish, primarily from networks here in WA to the Asia-Pacific region and beyond.

OPHG Director, Professor Hugh Dawkins, is a founding member of IRDiRC, the Vice Chair and represents Australia in the consortium.

IRDiRC sets sight on new goals for 2027

In August, the International Rare Diseases Research Consortium (IRDiRC) announced a new vision and three aspirational goals for rare disease research over the next ten years (2017 to 2027). These new goals came about as a result of IRDiRC’s undeniable success.

IRDiRC originally set two goals to achieve by 2020: to deliver 200 new therapies for rare diseases; and to establish the means to diagnose most rare diseases. The first of these goals was achieved in 2017, three years ahead of time. The second goal, to diagnose most rare diseases by 2020, is also within reach.

IRDiRC’s success builds on the eagerness of the international rare diseases research community to work collaboratively across borders. The consortium has now set sight on achieving even more ambitious goals to improve the health and wellbeing of people living with rare diseases.

A new vision: enable all people living with rare diseases to receive an accurate diagnosis, care and available therapy within one year of coming to medical attention.

To achieve this vision, IRDiRC aspires for:

- all patients coming to medical attention with a suspected rare disease to be diagnosed within one year if their disorder is known in the medical literature; all currently undiagnosable individuals to enter a globally coordinated diagnostic and research pipeline

- 1,000 new therapies for rare diseases to be approved, with the majority of new therapies focussing on diseases currently without approved treatment options, and

- methodologies to be developed to assess the impact of diagnoses and therapies on rare disease patients.

OPHG Director, Professor Hugh Dawkins, is a founding member of IRDiRC, the Vice Chair and represents Australia in the consortium.
Putting on a show!

In December, the Public and Aboriginal Health Division held its inaugural Showcase. The event was organised as a way for each directorate within the division to present the work that they do and provide an opportunity to network with colleagues working in different areas.

OPHG had a key role in event planning and management during the months leading up to (and after) the Showcase. This included chairing weekly meetings with the organising committee, coordinating content development, promoting the event across the division and conducting an evaluation.

The Showcase featured vibrant display stalls manned by team members from each of the seven directorates. OPHG’s display area featured a range of projects that the team had been working on recently, including the implementation of initiatives from the WA Rare Diseases Strategic Framework 2015-2018 (pages 6 and 11) and the process for developing a national policy framework for newborn bloodspot screening (page 11).

OPHG was delighted to have Dylan Gration, Research Assistant at WARDA, join the team to discuss the team’s work (led by Dr Gareth Baynam, Genetic Services of WA and WARDA) in utilising 3D facial imaging technology to advance the ability to diagnose, treat and monitor rare diseases.

The Showcase was a great success and attended by more than 120 staff members. Feedback received from attendees was very positive and many felt that it was a nice way to interact with colleagues and learn more about other areas of the division.

Cultural safety training

In October, OPHG, along with the teams at Genetic Services of WA and WARDA, attended a two-day workshop to learn about the historical and cultural context of Aboriginal health care, and learn new tools to improve their communication with Aboriginal and Torres Strait Islander people during patient consultations. These workshops were facilitated by the Aboriginal Health Council of Western Australia (AHCWA).

Cultural safety refers to an environment that is safe for people: where there is no assault, challenge or denial of their identity, of who they are and what they need. It is about shared respect, shared meaning, shared knowledge and experience, of learning, living and working together with dignity and truly listening.

Cultural safety is fundamental to improve health outcomes in Aboriginal* communities. The knowledge gained through these workshops will help improve the quality of services delivered by health professionals and better the experience of health services for Aboriginal people. OPHG is looking forward to continuing its journey in cultural safety training with AHCWA and translating the knowledge gained into policy development and public health practice.

*In WA, the term Aboriginal is used in preference to Aboriginal and Torres Strait Islander in recognition that Aboriginal people are the original inhabitants of Western Australia. No disrespect is intended to Torres Strait Islander people and communities.
Big data to save tiny lives

OPHG welcomed Jonah Glass to the team as a visiting Research Officer for four months in 2017. Jonah’s project involved assessing what is required to deploy Artemis at neonatal intensive care units (NICUs) in WA.

Artemis, daughter of Zeus and Leto, has historically been known as an ancient Greek goddess, a protector of child-bearing women and young children. Today, Artemis is a cutting-edge digital protector of premature babies.

Developed by Dr Carolyn McGregor and the team at the University of Ontario Institute of Technology (UOIT), Artemis can collect, process and store physiological data and clinical information from multiple devices and multiple patients all at the same time. This has great potential to support clinical discoveries that could dramatically improve healthcare efficiency and outcomes for patients as small as premature babies to astronauts in space.

During his time in Perth, Jonah engaged with various stakeholders to find out how Artemis could be deployed in WA NICUs and what the requirements are to do so. OPHG is grateful for the progress Jonah achieved during 2017, and look forward to welcoming Anastasiia Prysyazhnyuk, also from UOIT, who will continue to see this project through in 2018.

Making public health more precise

This year, OPHG partnered with the University of Western Australia, Curtin and Murdoch Universities to develop *Precision Public Health Asia 2018* (PPH Asia 2018). PPH Asia 2018 will be the first-ever symposium about the possibilities of precision public health in Asia.

Precision public health is an emerging field that utilises data to guide the right intervention to the right people at the right time. In doing so, precision public health is revolutionising public health practice and paving the way to better population health.

Recent technological advancements have made it possible to collect accurate individual and population-level data on genes, environmental, behaviour and other social and economic determinants of health. This has been demonstrated across a broad range of disciplines including genomics. By utilising more precise data for action, public health interventions may be enhanced to improve health for sub-populations most in need.

On 18 to 19 October 2018, PPH Asia 2018 will bring together a core group of experts to explore the concept of precision public health, the impact of recent technological advancements on health outcomes, the challenges and opportunities and also influence the future of precision public health in Asia. Visit pph2018.com to stay in the loop.
Peer-reviewed articles co-authored by members of the OPHG team in 2017:

About the Team

OPHG is comprised of three operational sections led by Director, Professor Hugh Dawkins.

Policy and Community

The Policy and Community section monitors and evaluates genetic services and programs in clinical and public health practice. The team also communicates and engages with stakeholders to keep them informed and involved in the development of evidence-based policies.

Screening Policy

The Screening Policy section builds knowledge and fosters debate on emerging screening issues. The team is also responsible for providing system-wide support to screening programs in WA.

Team members

- Alicia Bauskis
- Sarah Baxendale
- Faye Bowman
- Belinda Burns
- Angela Cho
- Leanne Lamont
- Trinity Mahede
- Caron Molster
- Kristen Nowak
- Caroline Walker

From L to R: Kristen Nowak, Belinda Burns, Sarah Baxendale, Trinity Mahede, Angela Cho, Faye Bowman, Alicia Bauskis, Anastasiia Prsyazhnyuk (visiting research officer), Hugh Dawkins

Absent: Leanne Lamont, Caron Molster, Caroline Walker